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Abstract

This study describes the analytical and numerical solution of the heat conduction equation for a localised moving heat source of any
type for use in laser material processing, as welding, layered manufacturing and laser alloying. In this paper, the analytical solution for a
uniform heat source is derived from the solution of an instantaneous point heat source. The result is evaluated numerically and is com-
pared to existing solutions for the moving point source and a semi-ellipsoidal source. Next, the result is used to demonstrate how such
model can be used to study the effect of the heat source geometry. Besides, this solution reveals that a melting efficiency higher than 0.37
(= 1/e, a maximum value stated by Rykalin [N. Rykalin, A. Uglov, A. Kokora, O. Glebov, Laser Machining and Welding, Mir Pub-
lishers, Moscow, 1978]) can be obtained. To investigate the effect of the temperature dependence of the material parameters, in particular
the latent heat of fusion, a finite difference model is implemented. It is shown that the enthalpy method is most suited to implement the
latent heat of fusion. A numerical evaluation for Ti–6Al–4V, reveals that the effect of the latent heat is rather small, except when the
conductivity is very low, e.g. when scanning in a loose powder bed. The results demonstrate that analytical and numerical solutions
can be effectively used to calculate the temperature distribution in a semi-infinite medium for finite 3D heat sources. In this way, a tool
to investigate the importance of different processing parameters in laser manufacturing is obtained.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

All laser material processing techniques require the cor-
rect amount of energy at the right place and at the right
time to ensure successful processing. The thermal history
of the process influences the melt pool behaviour, thermal
stresses, microstructure, etc. As such, it determines the final
properties of the processed part as strength, elongation,
fatigue behaviour, hardness and accuracy.

Therefore, it is of crucial importance to acquire reliable
and accurate predictions of the physical effects that occur
during processing. Indeed, mathematical models are used
to gain insight in the process, as experiments are rather
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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expensive. It is for example difficult to test different kinds
of laser beams, simply because for every test, new equip-
ment (laser and/or optics) is needed, because the laser beam
energy profile cannot be modified freely. As a typical exam-
ple, before installing a dual beam scanning system, it can be
interesting to investigate the effect of such configuration on
the temperature distribution.

Throughout this paper, the effect of different localised
3D moving heat sources on a semi-infinite medium with
variable material properties is investigated, assuming there
is only conductive heat transport. The major drawback lies
in the fact that the behaviour of molten material cannot be
taken into account.

Different authors, as Rosenthal [1] and Rykalin et al. [2],
have studied classical solutions of the heat conduction
equations. Carslaw and Jaeger [3] have brought this
together in a complete reference book with analytical
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Nomenclature

ah, bh, ch heat source parameters (m)
capp apparent heat capacity (J/kg K)
ceff effective heat capacity (J/kg K)
cLf heat capacity due to latent heat of fusion (J/

kg K)
c heat capacity
dx spot size along x (m)
dy spot size along y (m)
Fo Fourier number (–)
h enthalpy (J/kg)
k conductivity (W/m K)
Lf latent heat of fusion (J/kg)
n operating parameter (–)
PL laser power (W)
Pe Peclet number (–)
_q volumetric heat source (W/m3)
_qLf

volumetric heat source due to Lf (W/m3)
R radial distance (m)
r radius (m)
S cross section area (m2)

t time (s)
T temperature (K)
T0 room temperature (K)
Tl liquidus temperature (K)
Tm melting temperature (K)
Ts solidus temperature (K)
u internal energy (J/kg)
V scan speed (m/s)
x coordinate along scanning direction (m)
y coordinate perpendicular to scanning direction

(m)
z coordinate in depth (m)

Greek symbols

dh melt enthalpy (J/kg)
j thermal diffusivity (m2/s)
k Wavelength of error term (m)
q density (kg/m3)
r standard deviation (var)
h dimensionless temperature (–)
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solutions of the heat conduction equation. The heat
sources used are point sources, line sources and plane
sources, since these are the only types of geometry were
analytical solutions are straightforward to obtain. This
type of sources is suited to predict the thermal history at
a large distance from the source. However, they are useless
near the heat source, since temperature in the origin would
become infinite. To overcome this problem, 2D heat
sources were introduced by Eagar and Tsai [4]. The first
to introduce a 3D heat source, was Goldak et al. [5]. He
used a double ellipsoidal moving heat source to calculate
the temperature field with finite element modelling. Espe-
cially for the prediction of deeper welds, this was an
improvement compared to 2D heat sources. More recently
Nguyen et al. [6,7] developed a closed form analytical solu-
tion for this kind of 3D heat sources in a semi-infinite body
or in a thick plate. This enabled them to predict the melt
pool geometry. Further, many more authors have used
numerical techniques to evaluate particular problems in
heat transfer. Reviews are given by Hu and Argyropoulos
[8] and by Mackwood and Crafer [9].

In the field of Rapid Manufacturing, many authors
describe the modelling of a specific process, with specific
boundary conditions, by use of FEM software ([10,11],
a.o.). Amongst them, Chen and Zhang [12] have written
an interesting contribution on the modelling of the shrink-
age during processing of powder mixtures. Besides, some
authors have described models for very specific sub-pro-
cesses that occur during SLM. Gusarov and Kruth [13]
have described the absorptivity of lasers used on powder
beds. Determination of the contact angle of a fluid on a
solid is described by Gould [14]. Roy and Schwartz have
described the stability of liquid ridges [15]. Modelling of
Marangoni convection is less straightforward.

The aim of the present study is to investigate the relative
importance of different parameters for laser manufactur-
ing. If the effect of the heat source is to be studied, an ana-
lytical solution can be effective. If the effect of material
properties is to be studied, the use of a finite difference
model (FDM) is obvious. This paper contains the mathe-
matical exposition, needed for these investigations. The
paper is organised as follows: Section 2 contains the math-
ematical relations that describe the general process of heat
transfer. In Section 3, these equations, are solved analyti-
cally for different heat source geometries and constant
material parameters. In Section 4, a FDM for a 3D semi-
infinite medium is derived. Different techniques to imple-
ment the latent heat of fusion are discussed.

2. Heat conduction equation for moving heat sources

The general convection–diffusion equation can be writ-
ten as

oqu
ot
þ oqhV

ox
¼ r � ðkrT Þ þ _q ð1Þ

where u is the internal energy, h the enthalpy, q the density,
k the conductivity, _q a volumetric heat source, T the tem-
perature and V the speed of either the heat source or the
medium. In most applications, the origin of the coordinate
system is fixed to the centre of the heat source on top of the
processed surface.

The x direction corresponds to the constant speed of a
moving heat source. y is the direction perpendicular to x,
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in the plane of the processed material surface, and z is
directed inside the processed material. The first term in
Eq. (1) on the left hand side represents the change of inter-
nal energy and the second is a convective term. On the right
hand side, there is the conductive term and a heat source or
sink. For V = 0, this equation becomes the heat conduction
equation, given that du = cdT, with c the heat capacity:

c
oqT
ot
¼ r � ðkrT Þ þ _q ð2Þ

The steady state equation with constant velocity V, can be
simplified using the continuity equation

oq
ot
þ oqV

ox
¼ 0 ð3Þ

resulting in

qcðT ÞV oT
ox
¼ r � ðkðT ÞrT Þ þ _q ð4Þ

given that du = dh = cdT.

3. Analytical solution of the heat conduction equation

In this section, the analytical solution of a uniform heat
source, irradiating a semi-infinite 3D medium is derived.
The temperature field will be compared to existing analyt-
ical solutions.

Firstly, the well known solution of a point heat source is
given as a reference. Secondly, the solution of a semi-ellip-
soidal moving heat source is given [5]. And thirdly, the
solution for a uniform finite heat source is deduced. Subse-
quently, these results are used to study the effect of the heat
source geometry on the temperature field. First, it is shown
for a numerical example that near the heat source, the tem-
perature field is different for different heat sources. Next,
the consequences of this for the melting efficiency of a pro-
cess are discussed. Further, it is shown that one can predict
the temperature field of very complex heat sources.
Finally, the results are used to get some insight in what
happens if the Peclet number is changed. This is important
when studying the effect of the latent heat, a topic that will
be discussed in more details in Section 4.

3.1. Moving point heat source

The derivation and the analytical solution of the temper-
ature field induced by a moving point heat source in a 3D
semi-infinite body is a.o. described by Carslaw and Jaeger
[3]:

h ¼ P L

4pkRðT m � T 0Þ
expð�V ðRþ xÞ=2jÞ ð5Þ

with the dimensionless temperature h = (T � T0)/(Tm �
T0), j the thermal diffusivity, defined as j ¼ j

qc ; P L the
applied laser power and R the distance from the heat
source location (R2 = x2 + y2 + z2).
From this equation, it is clear that the temperature at
the heat source location is infinite. Although this equation
cannot accurately predict the temperature field in the
neighbourhood of a finite heat source, it can serve well
for validation purposes. Indeed, far from the source, the
isotherms should tend to coincide.

3.2. Semi-ellipsoidal moving heat source

Goldak et al. [5] were the first to introduce a 3D heat
source, more in particular a semi-ellipsoidal heat source,
with heat flux _q:

_qðx; y; zÞ ¼ 6
ffiffiffi
3
p

P L

ahbhchp
ffiffiffi
p
p exp � 3x2

c2
h

� 3y2

a2
h

� 3z2

b2
h

 !
ð6Þ

with ah, bh and ch heat source geometry parameters.
The solution for the temperature field in a semi-infinite

body was derived by NGuyen et al. [6]. The result in dimen-
sionless form is given as

h
n
¼ 1ffiffiffiffiffiffi

2p
p

Z V 2 t
2j

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ u2

a

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ u2

b

p A1ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ u2

c

p
 !

ð7Þ

where

A1 ¼ exp � ðnþ sÞ2

2 sþ u2
c

� �� w2

2 sþ u2
a

� �� f2

2 sþ u2
b

� �
 !

The dimensionless parameters are defined as recommended
by Christensen’s method [16]: n ¼ Vx=2j;W ¼ Vy=2j; f ¼
Vz=2j; s ¼ V 2ðt � t0Þ=2j; ua ¼ Vah2

ffiffiffi
6
p

j; ub ¼ Vbh2
ffiffiffi
6
p

j; uc ¼
Vch2

ffiffiffi
6
p

j and n = PLV/(4pj2qc(Tm � T0)).
This solution approximates the temperature field near

the laser spot fairly well in most cases, since normally,
the beam profile resembles quite good this type of source,
except that a real heat source does not spread to infinity,
as is the case for a Gaussian profile.

Goldak et al. experienced that this type of heat source
predicted the temperature gradients in front of the source
to be less steep than experimentally observed. Therefore,
they created the double ellipsoidal heat source, which is a
mathematical deformation of the semi-ellipsoidal or ellip-
soidal heat source. However, in practice, most heat sources
are symmetrical. In this paper, artificial heat sources will
not be used, because for the purpose of this research, this
seems of little value.

On the other hand, the fact that a small change of the
source intensity profile results in a noticeable change in
temperature field, is an indication that the heat source
geometry is significant for the temperature field.

In order to study the effect of source shapes, the solution
of the ellipsoidal heat source is not very useful, because it is
not straightforward to create other geometries by adding
multiple ellipsoidal heat sources. As a basis for complex
heat source geometries, a heat source that is completely
uniform is optimal. Therefore, the solution for a uniform
moving heat source will be deduced in the next section.
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3.3. Uniform moving heat source

The heat flux _qðx; y; zÞ at a point (x,y,z) within a uni-
form source is given by

_qðx; y; zÞ ¼ P L

4ahbhch

�ch < x < ch

�ah < y < ah

0 < z < bh

8><
>: ð8Þ

As for the other types of heat sources, the solution is based
on the solution for an instantaneous point source in fixed
coordinates [3]:

dT t0 ¼
_qdt0

qc 4pj t � t0ð Þ½ �3=2

� exp � x� x0ð Þ2 þ ðy � y0Þ2 þ ðz� z0Þ2

4jðt � t0Þ

 !
ð9Þ

where (x0,y0,z0) is the location of the instant point source
and dT t0 is the transient temperature increase at the
observation time t due to the point heat source _q at
time t0.

Integration over the volume of the heat source and sub-
stitution of Eq. (8) gives:

dT t0 ¼
Z ch

�ch

dx0
Z ah

�ah

dy 0
Z bh

�bh

dz0
dt0

qc 4pjðt � t0Þ½ �3=2
:

P L

4ahbhch

� exp �ðx� x0Þ2 þ ðy � y0Þ2 þ ðz� z0Þ2

4jðt � t0Þ

 !
ð10Þ

The integrals can be calculated as follows:

I ¼
Z ch

�ch

exp � x�x0ð Þ2

4jðt� t0Þ

 !
dx0

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jpðt� t0Þ

p
2

Erf
x�chffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j t� t0ð Þ

p
 !

�Erf
xþ chffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j t� t0ð Þ

p
 ! !

ð11Þ

With Fos the Fourier number based on s and t � t0 as
length and time respectively, Erfh(x, s, t0) is defined as

Erfhðx; s; t0Þ,Erf
x� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jðt � t0Þ
p
 !

� Erf
xþ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jðt � t0Þ
p

 !

¼ Erf

ffiffiffiffiffiffiffi
Fos
p

2

x
s
� 1

� �� �
� Erf

ffiffiffiffiffiffiffi
Fos
p

2

x
s
þ 1

� �� �

,Erfh
x
s
; Fos

� �
ð12Þ

and substituting Eqs. (11) and (12) in Eq. (10) results
in:

dT t0 ¼ �
P L dt0

25qcahbhch

Erfhðx; ch; t0ÞErfhðy; ah; t0ÞErfhðz; bh; t0Þ

ð13Þ
Integration over time gives

T � T 0 ¼ �
P L

25qcahbhch

Z t

0

Erfhðxþ V ðt � t0Þ; ch; t0Þ

� Erfh y; ah; t0ð ÞErfhðz; bh; t0Þdt0 ð14Þ

for a uniform heat source moving with velocity V along the
x direction.

The heating efficiency is defined as g ¼ qcahbhchðT m�T 0Þ
P Lt . The

latter is closely related to the melting efficiency which will
be used later. The equation can now be formulated
dimensionless:

h ¼ � 1

25g

Z t

0

Erfh
xþ V t � t0ð Þ

ch

; Foch

� �

� Erfh
y
ah

; Foah

� �
z

bh

; Fobh

� �
dt0

t
ð15Þ

h(x,y,z, t) can be evaluated by numerical integration. For
t ?1 or Fo ?1, we obtain a steady state situation. Prac-
tically, for most cases in laser processing, already after 1 s,
the steady state situation has settled.

Another important dimensionless parameter in heat
transfer is the Peclet number Pe, which measures the pro-
portion of convection to conduction. Pe is defined in this
paper as

Pe ¼ Vch

j
ð16Þ

For a given heat source, the steady state temperature field
can now be written in function of Pe and g, where the latter
one only results in a scaling of the temperature field, as can
be seen from Eq. (15). Because Pe is often used as a refer-
ence, it will be mentioned for each example. The shape of
the temperature field will also depend on the type of heat
source, as will be shown in the next section.

3.4. Numerical evaluation

All equations are implemented in Matlab�, using a tra-
pezium rule for the numerical integration over time. The
material parameters used in this study correspond to that
of Ti–6Al–4V: Tm = 1933 K, T0 = 293 K, q = 4450 kg,
c = 564 J/kg K, k = 6 W/m K (resulting in a diffusivity
j = 2.4 � 10�6 m2/s). The time to obtain steady state was
chosen to be t = 1.5 s. A conductivity of 6 W/m K, slightly
lower than normal bulk Ti–6Al–4V, was used because parts
produced by selective laser melting often have still some
amount of porosity, which lowers the conductivity [17–20].

Fig. 1a–c gives the result for a scanning speed
V = 0.05 m/s, laser power PL = 25 W, ch = ah = 0.15 mm,
bh = 0.05 mm (thus Pe = 3.14) and this for z = 0, which
is on top of the solid. For the point heat source, the isother-
mal lines are omitted for values higher than 1.6. At (0, 0,0)
the temperature in this case is infinity.

The figures confirm intuitive trends: the more the energy
is concentrated, the higher the peak temperature. Higher
temperatures, for a constant energy density PL/V, can be
obtained by choosing a source geometry with a higher



Fig. 1. Steady state temperature field for various heat sources.

1 In addition, energy is lost by radiation, by convection with the
surrounding atmosphere and by expulsion of material. These effects are
not taken into account in this simple model. However, in a lot of relevant
cases, these losses are negligible [22].
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energy flux near the centre or by decreasing the spot size.
The location of the peak temperature is situated near the
rear end of the spot. The higher the speed of the heat
source, the more the peak temperature is situated at the
rear end. However, it lies always inside the spot. The ellip-
soidal heat source does not have an edge, but most of the
energy is delivered inside the so-called spot. Usually, the
spot is defined as the region where the intensity amounts
to 1/e2 or higher (see [21] a.o.).

A comparison between the different plots reveals that far
from the origin, the isothermal lines almost match, which is
in agreement with the expectations. However, in order to
achieve a reliable estimate of the peak temperature or an
estimate of the thermal gradients near the spot, a good
choice of the heat source is necessary.
3.5. Melting efficiency

The resulting temperature field of a uniform moving
heat source, can be used to comment on the idea of the
melting efficiency. For laser processes where melting
occurs, the melting efficiency is defined as the ratio of the
minimal amount of energy needed to warm up and melt
a given amount of material to the added energy:

gm ¼
VSdh
P L

ð17Þ

where S is the cross section area of the molten track. Often
S is approximated as the width of the melt pool multiplied
by the depth of the melt pool. Heat that is not used for
melting, is used for overheating of the melt pool or is lost
by conduction. The latter results in the heating of the mate-
rial next to the molten track.1

Rykalin et al. [2] derived that the maximum melting effi-
ciency for a point heat source is about 0.37 for the 3D case.
However, does this mean that in practice no higher efficien-
cies can be achieved? There are at least two ways to get a
higher efficiency, in theory. Knowledge of this maximum
value would help in tightening the boundaries of the
multi-dimensional hypervolume that describes the
problem.

In general, high efficiencies can be obtained for high
scanning speeds, since then, the conduction can be
neglected. A simulation of a stationary point heat source
reveals that in the very beginning, all the excess of energy
is found in the overheating of the melt. Indeed, for a point
heat source, there will always be overheating of the melt
since the peak temperature is infinite.

Suppose now that a uniform source is used, that has just
enough energy to melt part of the material, with hardly any
overheating. For a low conductivity and very high scan
speed, intuitively, it is expected that the melting efficiency
approximates 1. From a mathematical point of view, how-
ever, it is not easy to prove this. Therefore, the integration
is performed numerically. Parameters are V = 2 m/s,
PL = 125 W, k = 0.1 W/m K, t = 0.1 s, ah = ch = 0.15 mm,
bh = 0.05 mm, resulting in Pe = 7529. The resulting tem-
perature field is given in Fig. 2. The depth of the melt pool



Fig. 2. Temperature field for high speed scanning with a unifrom heat
source (Pe = 7529).
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is about 0.042 mm and the efficiency is about 0.67. Going
faster or decreasing the conductivity, will increase the effi-
ciency. In fact, the higher Pe, the higher the efficiency.

In practice, axi-symmetric heat sources are used. A torus
shaped heat source will result in a quasi uniform heat deliv-
ery perpendicular to the scan direction and will thus have a
higher melting efficiency compared to semi-ellipsoidal heat
source.

Another possibility to increase the efficiency is the fact
that part of the energy can be recycled. This idea is signif-
icant for rapid prototyping techniques, where large sur-
faces are scanned. Suppose one wants to scan a circular
surface and starts from the outer edge. Some heat will be
conducted to the inner part of the circle. For the last scan,
the part will have been preheated significantly and there-
fore, the laser power can be decreased, increasing the effi-
ciency. The scanning parameters should be adapted to
Fig. 3. Temperature fi
compensate for the heat accumulation, which is in fact a
recuperation of already used heat.
3.6. Other source geometries

The heat conduction equation is linear. Therefore, the
solution of this equation for two heat sources is the same
as the sum of the solutions of the separate heat sources.
Thus, whatever geometry that is wanted, can be obtained
by a linear combination of elementary heat sources. As
an example, this was implemented for a ‘smiley’ (Fig. 3,
left), consisting of 2 semi-ellipsoidal heat sources with
ah = ch = 0.15 mm, and PL = 20 W (the eyes) and 6 uni-
form heat sources with parameters ah = ch = 0.075 mm
and PL = 10 W (the mouth). bh = 0.05 for all sources.
The other parameters are k = 6 W/m K and V = 0.05 m/
s. The result is given in Fig. 3 on the right.
3.7. Latent heat of fusion

Latent heat of fusion has a significant effect on the melt
pool size and the melt pool shape. As explained by De
Lange et al. [23], in the zone were the solidification occurs,
the Peclet number becomes very high because of Lf, reduc-
ing the importance of the conduction, thus making the rear
end of the melt isotherm much sharper than the other iso-
thermal lines. This effect can be seen by simulating the tem-
perature field for different samples of homogenous
materials with different, but constant Peclet numbers. The
result is given in Fig. 4, with parameters ah = ch = 0.5 mm,
bh = 0.05 mm and V = 0.05 m/s.

The result can be understood easily: if the temperature
gradient after the laser becomes smaller, as certainly is
the case for the region around melting temperature, the
importance of the heat conduction perpendicular to
the moving direction gains in importance, thus changing
the isothermal lines.
eld of a ‘Smiley’.



Fig. 4. Effect of Pe on the shape of the isotherms.
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4. Finite difference model

A finite difference model (FDM) was implemented in
Matlab� to investigate the effect of the material parame-
ters temperature dependence and in particular the effect
of the latent heat, since simulations have shown that the
effect is significant.

4.1. Derivation of the model

Time-marching or false time stepping is used to make
the convection–diffusion equation easier to solve. We are
only interested in the steady state solution. The equation
now becomes

qcðT �Þ oT
ot
þ qcðT ÞV oT

ox
¼ r � ðkðT ÞrT Þ þ _q ð18Þ

for a heat source moving to the left. T* is a fixed tempera-
ture, that can be chosen freely at the beginning.2

Implicit Euler is used for the time integration:

Unþ1 � Un ¼ f ðtnþ1;U
nþ1ÞDt ð19Þ

where U = T in our case.
For the convective term, a first order upwind difference

scheme is used. For V > 0, this becomes:

qcðT ÞV oT
ox
! V qi

cðT iÞ þ cðT i�1Þ
2

T i � T i�1

xi � xi�1

� �
ð20Þ

For the diffusive term, a central difference scheme is used

r � ðkðT ÞrT Þ ! ðkijh þ kiþ1Þ
T iþ1 � T ijh

ðxiþ1 � xijhÞðxiþ1 � xi�1Þ

� �

� ðkijh þ ki�1Þ
T ijh � T i�1

ðxijh � xi�1Þðxiþ1 � xi�1Þ

� �
þ . . . ð21Þ
2 For a transient temperature field, modelled with a fixed grid, q should
be constant in order to conserve mass. However, for a steady state solution
in a semi-infinite medium, this requirement should not be fulfilled.
The material parameters are evaluated at moment t. For
each time step, the equation can be written as

AT tþ1 ¼ BT t þ _q ð22Þ
4.2. Boundary conditions

There are two different kinds of boundary conditions
that can be used. The first one is a known temperature
on the boundary. The second one is a known heat flux.
The latter is used to incorporate the symmetry boundary
conditions, where the heat flux is zero perpendicular on
that face.

The advantage of the analytical solution is that one can
calculate the temperature at a particular point, without cal-
culating the complete temperature field. Therefore, using
the analytical solution as boundary condition, is fast and
easy to implement. In this study, the Goldak heat source
is used. This way, the size of the grid can be limited, because
room temperature is only found far from the origin.

4.3. Stability and convergence

Define d as the inverse of a Peclet number and m as a
dimensionless speed so that

d ¼ kDt
qcðT �ÞDx2

ð23Þ

and

m ¼ V Dt
Dx

qc
qcðT �Þ ð24Þ

Then the footprint becomes, as described by Hirsch [24],

f ðkÞDt ¼ ð�2d � mÞ þ ðdÞeIkDx þ ðd þ mÞe�IkDx

¼ ð�2d � mÞ þ d½cosðkDxÞ þ I sinðkDxÞ�
þ ðd þ mÞ½cosðkDxÞ � I sinðkDxÞ�
¼ ð2d � mÞ½cosðkDxÞ � 1� � mI sinðkDxÞ ð25Þ



Fig. 5. Solutions of the 1D convection diffusion equation.
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If d > = 0 and m > = 0, the footprints are situated in the left
half plane and the method is always stable. Thus, for con-
stant material properties, the solution is found immedi-
ately, by taking a very large time step.

However, the region around the melting and solidifica-
tion fronts have highly non-linear material properties. In
this case, some instabilities can occur, depending on the
method that is used to implement the latent heat of fusion.
This will be discussed below.

4.4. Latent heat of fusion

There are different ways to take into account the effect of
latent heat. Hu and Argyropoulos give an overview of dif-
ferent methods that can be used [8]. They state that solving
the strong numerical solution, i.e. locating the exact mov-
ing boundary, is very difficult to apply for 3D cases. The
alternative is to reformulate the problem in such a way that
the Stefan condition3 is implicitly incorporated in a new
form of equations, which applies over the entire region of
a fixed domain. These methods are referred to as weak
numerical solutions, in which explicit attention to the nat-
ure of the moving boundary is avoided. As such, Eq. (4)
can be solved for a temperature dependent c0 (capp or ceff)
or an extra heat sink _qLf

. There are five main weak numer-
ical solutions, which will be discussed here, after the discus-
sion of the stability and convergence in the case that latent
heat is considered.

4.4.1. Stability and convergence
For non-linear problems, no formal method is available

to evaluate stability and convergence. The behaviour of a
solution is validated by practical calculations. Convergence
to the correct solution cannot be proved. Fortunately, a
qualitative picture of the temperature field is known a
priori.

Consider a 1D heat conduction problem, including
latent heat, without heat source. The formulation of the
problem can be written as

qc0V
oT
ox
¼ k

o
2T

ox2
ð26Þ

or

qcV
oT
ox
¼ k

o2T
ox2
þ _qLf

ð27Þ

From a physical point of view, latent heat can never cause
the temperature field to have a local maximum or mini-
mum. For a region where c0 can be considered to be con-
stant, only 4 solutions exist (see Fig. 5).

Eq. (26) inherently satisfies this monotonous behaviour,
while Eq. (27) does not. This however, is not a prove for
convergence or not. It only indicates that probably the con-
vergence of a solution with c0 will be faster.
3 ks oT s
ox � kl

oT l
ox ¼ Lfq dX

dt , where X is the position of the moving boundary
between melt ‘l’ and solid ‘s’.
The evaluation for the different solutions is based on
mainly three observations.

First, the monotonous behaviour must almost be satis-
fied. The reason is that for a non-monotonous temperature
field after the heat source, the error on the location of the
rear end of the melt pool becomes very large. This is a
parameter of interest, since it determines the behaviour of
the melt pool in different production processes. Next, the
solidification area should have a temperature that is in
the melting range. Otherwise, the solution is wrong. And
last, this conditions must be met for relative large grid size.
A 3D model suffers from the fact that it can become very
large. Grid refinement is no option, because the solidifica-
tion region is extended in three dimensions, and can be very
long at the rear end for high Peclet numbers.

4.4.2. Different solutions

A first method is the apparent heat capacity method,
where capp ¼ cþ cLf

is calculated, with Lf ¼
R T l

T s
cLf

dT . Ts

and Tl are the solidus and liquidus temperature respec-
tively. This definition results in a value for capp for each
temperature, and does not imply a conservation of mass.
The method is inherent instable. A complete proof is out
of the scope of this work. However, it can be shown that
multiple solutions exist. Consider for example the one
dimensional equation, without heat source:

hiþ1 � hi 2þ capp hið ÞqV Dx
kðhiÞ

� �
þ hi�1 1þ capp hi�1ð ÞqV Dx

kðhi�1Þ

� �
¼ 0 ð28Þ

Suppose that the boundary condition is h = 0.95. The cor-
rect solution is a uniform temperature at this value. For
hi+1 = hi�1 = 0.95, two numerical solutions for the equa-
tion can be found: hi,1 = 0.95, which is what is expected,
but also hi,2 slightly higher than 1. The exact value depends
on the temperature dependence of capp, being a function of
Lf, Ts and Tl. Practically, there is no possibility to obtain a
resulting temperature field that meets the criterion of
monoticity.
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The effective capacity method is a more stable (i.e. the
resulting temperature field is closer to the correct tempera-
ture field) variant of the apparent heat capacity method.
Here, the apparent heat capacity is averaged over the vol-
ume of a unite cell, supposing that the temperature profile
between two cells is linear. However, there still is no con-
servation of energy, and practically, the resulting tempera-
ture field is not monotonous for grid sizes, that can be
handled with Matlab�.

A third method is the heat integration method. The idea
is that the temperature of the molten material will be lower
by an amount of:

DT ¼ Lf=c ð29Þ

which corresponds to the extra energy for the phase transi-
tion itself. This energy cannot be used for overheating of
the melt. For Ti–6Al–4V, DT is more than 500 K.

However, for a 3D moving heat source, this method
seems incorrect, The other methods indicate that the peak
temperature is independent of Lf for normal values of Lf.
This can be understood by the fact that the net heat source,
due to the latent heat of fusion, is zero: in a steady state sit-
uation, the energy consumed during melting is released
during solidification.

A fourth method is the source based method. Here a new
source term is constructed:

_qLf
¼ �q

ohLf

ot
¼ �qV

o
R

cLf
dT

ox
ð30Þ

Closely related to the source based method is the last meth-
od, the enthalpy method. Both are conservative ways to
introduce the latent heat. The heat conduction equation
can be written as

qV
oh
ox
¼ r � ðkðT ÞrT Þ þ _q ð31Þ

This is implemented like the heat capacity method, with

�cLf
¼

Z T 2

T 1

cLf
dT

� �.
T 2 � T 1ð Þ ð32Þ
Fig. 6. Temperature profile on the su
The effective heat capacity becomes

ceff ¼ cþ �cLf
ð33Þ

The difference with the apparent heat capacity method is
that here a change between xi�1 and xi, is observed, which
guarantees the conservation of energy. Furthermore, for
pure materials, the heat capacity becomes infinite in the
heat capacity method. For the enthalpy method, this does
not pose any numerical problem.

Mathematically, the enthalpy method and the source
based method are equivalent:

_qLf
¼ �qV

o
R

cLf
dT

ox
$ �qV

o
R

cLf
dT

ox

T tþ1
2 � T tþ1

1

� �
T t

2 � T t
1

� � ð34Þ

However, the stability is different. The enthalpy method is
more stable as was shown in the section on stability and
convergence. This results in an easier and faster conver-
gence for the enthalpy method. The source based method
can be made more stable, by implementing it implicitly,
but this is somewhat less straightforward. As a result, the
enthalpy method is selected for the implementation, and
will be used in the remaining of the paper.

For the ease of calculation, we assume that heat capacity
due to the latent heat is Gaussian. This assures a smooth
transition. Hence we have

cLf
¼ Lf

r �
ffiffiffiffiffiffi
2p
p exp � T � T mð Þ2

2r2

 !
ð35Þ

Here, r is the standard deviation and is a measure of the
melting region. It is calculated as r = a � DTm where a is
a fixed, but in fact unknown, parameter.

Fig. 6a gives the result for a spot with ah = ch = 0.3 mm,
V = 0.05 m/s, PL = 40 W, q = 4450 kg/m3, k = 7 W/m K,
c = 564 J/kg K and a high Lf = 2,920,000 J/kg (DT =
5 K). This high value of Lf was chosen for demonstration.
For Ti–6Al–4V, Lf = 292,000 J/kg. The effect for a smaller
value of Lf is rather small for a low Peclet number. All
parameters are constant and the same for the liquid and
the solid. In Fig. 6b, Lf = 0. One can verify that the temper-
rface of a semi-infinite medium.
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ature distribution only changes significantly at the rear end
of the melt pool. The peak temperature is the same in the
both cases! The length of the melt pool can change signif-
icantly due to the latent heat of fusion for high Peclet num-
bers. A factor 2 or more is possible if scanning on a
material with a low conductivity, like a powder bed.

By using Eq. (35), the enthalpy hLf
can be calculated

hLf
¼
Z T

0

cLf
dT ¼ Lf

2
erf

T � T m

r
ffiffiffi
2
p

� �
� erf

�T m

r
ffiffiffi
2
p

� �	 


� Lf

2
erf

T � T m

r
ffiffiffi
2
p

� �
þ 1

	 

ð36Þ

Hence we have

D2
1h ¼ Lf

2
erf

T 2 � T m

r
ffiffiffi
2
p

� �
� erf

T 1 � T m

r
ffiffiffi
2
p

� �	 

ð37Þ

The average power that is stored respectively released be-
cause of melting and subsequent solidification is

P Lf
¼ p

4
bdVLfq ð38Þ

where p
4

bd is the frontal area of the melt (b is the width and
d is the depth, and the surface is supposed to be elliptical).

For a Ti–6A1–4V alloy with Lf = 292000 J/kg and
q = 4450 kg/m3, a spot of 0.3 mm travelling at a speed of
50 mm/s, we obtain, for PL = 40 W, a calculated width of
the melt pool b � 0.3 mm and a calculated depth of the
melt pool d � 0.2 mm, so that P Lf � 3:06 W. This is a small
value compared to a normal power that is PL =
50 . . . 200 W. The effect of the latent heat is therefore
rather small. This is in agreement with the previous solu-
tion for the temperature field. The variation of the power
of the heat source, or the change in absorptivity of the
material might have the same size.

The same conclusion can be found when observing typ-
ical values for the melting efficiency. For Ti–6Al–4V, the
relative importance of Lf = 292,000 J/kg is rather small,
compared to the heating of the material, which is
cDT � 564 J/kg K * 1600 K = 902,400 J/kg. This means
that only 25% of the useful energy is needed for the melt-
ing. If the melting efficiency is gm � 10%, than proportion
of the melting energy is only 2.5%. This value compared
to a laser power PL = 100 W, gives 2.5 W.

5. Conclusions

For constant material properties, it is possible to solve
the 3D heat conduction equation with a moving heat
source analytically. This is elaborated for the case of a uni-
form heat source. The result is compared to existing solu-
tions for the moving point source and a semi-ellipsoidal
source. This analytical model has several advantages over
FDM. First, it is very useful to study different heat source
geometries. Moreover, with this analytical model, it is
shown that the melting efficiency can be higher than 0.37,
a value stated by Rykalin. Last but not least, the analytical
solution can serve very well as boundary condition for
FDM. If the material parameters depend upon the temper-
ature, as is especially the case when the effect of latent heat
is to be studied, the problem can be solved with FDM. To
implement the latent heat of fusion, the enthalpy method is
most stable, converges fastest and incorporates the conser-
vation of energy. For Ti–6Al–4V, the effect of the latent
heat is rather small, except for the case when the conductiv-
ity is very low, like scanning in a loose powder bed. The
implementation of the presented models results in a useful
tool to investigate the effect of different processing
parameters.
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